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In the Dagan & Tulin (J. Fluid Mech., vol. 51, 1972, pp. 529–543) model of ship
waves, a blunt ship moving at low speeds can be modelled as a two-dimensional semi-
infinite body. A central question for these reduced models is whether a particular ship
design can minimize, or indeed eliminate, the wave resistance. In the previous part of
our work (Trinh et al., J. Fluid Mech., vol. 685, 2011, pp. 413–439), we demonstrated
why a single corner can never be made waveless. In this accompanying paper, we
continue our investigations with the study of more general piecewise-linear, or multi-
cornered ships. By using exponential asymptotics, we demonstrate how the production
of waves can be directly ascertained by the positions and angles of the corners. In
particular, this theory answers the question raised by Farrow & Tuck (J. Austral. Math.
Soc. B, vol. 36, 1995, pp. 424–437) as to why certain bulbous-like obstructions can
minimize the production of waves. General results for wavelessness are given for a
class of hulls, and numerical computations of the nonlinear ship-wave problem are
used to confirm analytical predictions. Finally, we discuss open questions regarding
hulls without corners and more general three-dimensional bluff bodies.
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1. Introduction
The investigations in this paper are focused on the analysis of the low-speed

or low-Froude-number wave models proposed by Dagan & Tulin (1969, 1972), in
which blunt-bodied ships are studied in the context of potential flow and asymptotic
expansions in powers of the Froude number (the Froude number represents the ratio
between inertial and gravitational forces). As a particularly interesting case that draws
our attention, we recall the work of Farrow & Tuck (1995), who showed that by
attaching a bulbous-like obstruction to an otherwise rectangular ship’s stern, one could
produce a dramatic effect on the production of transverse waves. As they reported in
their paper:

At this [Froude number], a rectangular stern generates waves with steepness
0.0855, whereas the stern with the downward-pointing bulb [. . . ] yields waves
with steepness 0.0119. It is clear that the addition of the downward-pointing
bulb has had a dramatic effect on the downstream wave steepness, reducing it
by a factor of 7.2, although it has still not eliminated the waves entirely.
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FIGURE 1. Are any of these ships waveless? In all cases, the flow is from left to right
and nodes indicate singularities in the analytic continuation.

Our goal is to give an analytical criterion that explains why this phenomenon occurs;
that is to say, what distinguishes the two ships, one with a bulb and one without a
bulb, in the context of the ‘slow-ship’ approximation? The advantage of the slow-ship
potential-flow approximation is that it allows us to directly relate the generation of
waves to the shape of the ship’s hull without the need for numerical simulations.

In addition to addressing the Farrow & Tuck (1995) issue, we are also interested
in a more general question: in the low-speed limit, when a blunt ship is modelled
as a two-dimensional semi-infinite body, can it ever be made waveless? These
waveless or wave-minimization questions in the context of the Dagan & Tulin (1972)
approximation were studied by Vanden-Broeck & Tuck (1977), Vanden-Broeck,
Schwartz & Tuck (1978), Madurasinghe & Tuck (1986), and Tuck (1991a,b) for ship
hulls of varying geometries, and we are interested in continuing their line of inquiry.

In the previous part of our work (Trinh, Chapman & Vanden-Broeck 2011), we
demonstrated that piecewise-linear hulls with a single, submerged corner can never
be made waveless; thus consequently, a free surface that attaches to a single-cornered
bow at a stagnation point is not possible within the Dagan & Tulin (1972) model. For
the case of piecewise-linear hulls with multiple corners, the answer to this question is
not as clear. For example, are any of the eight hulls presented in figure 1 waveless?
If not, then which ones produce the smallest waves? For the case of potential flow
over a submerged obstruction, waveless configurations are certainly possible, as was
demonstrated by Lustri, McCue & Binder (2012) and Hocking, Holmes & Forbes
(2012), but the same question for surface-piercing ships of general form remains open.
Certainly, there are notable difficulties in studying this problem. For example, waveless
ships were proposed by Tuck & Vanden-Broeck (1984) and Madurasinghe & Tuck
(1986), but these were later refuted in the more comprehensive numerical study by
Farrow & Tuck (1995), in which they showed that
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The free surface would at first sight appear to be waveless, but on closer
examination of the numerical data, there are very small waves present and they
have a steepness of 1.5× 10−3

in reference to the bulbous hull in Tuck & Vanden-Broeck (1984). Our desire, then,
is to study these issues in terms of the low-Froude-number asymptotic expansions.

Having progressed through the theory of Trinh et al. (2011), we know that at low
Froude numbers, the waves generated by a ship become exponentially small and are
thus invisible to a regular asymptotic expansion. The ineffectiveness of traditional
asymptotics in capturing the low-speed limit was first noted by Ogilvie (1968, 1970)
and later termed the low-speed paradox. Techniques in exponential asymptotics (Boyd
1998) allow us to demonstrate the fact that these hidden waves are switched-on when
the regular expansion is continued across critical curves (Stokes lines) in the complex
plane; this process is known as the Stokes phenomenon. Most important, however, is
the valuable insight that these approximations give: an explicit formula that relates the
shape of an arbitrary hull with its resultant waves. The question of wavelessness in
the low-Froude-number limit is then simplified to examining whether the sum of the
Stokes-line contributions can ever be zero in regions far from the ship.

The requisite background in exponential asymptotics can be found in Trinh et al.
(2011). The techniques we apply are based on the use of a factorial-over-power
ansatz to capture the divergence of the asymptotic expansions, then optimal truncation
and Stokes-line smoothing to relate the late-order terms to the exponentially small
waves (see for example, papers by Olde Daalhuis et al. 1995, Chapman, King &
Adams 1998, and Trinh 2010a). Our paper also parallels the works of Chapman &
Vanden-Broeck (2002, 2006) and Trinh & Chapman (2013a,b) on the application of
exponential asymptotics to the study of gravity or capillary waves produced by flow
over a submerged object.

1.1. The role of low-Froude-number approximations and an outline of the paper
It is important for us to mention that the low-Froude-number model of Dagan & Tulin
(1972) is indeed a very idealized approximation for understanding the production of
ship waves. Real stern and bow flows are very complex, and viscosity, turbulence,
and necklace vorticies can all play an important role in the production of waves. We
refer the reader to, for example, some of the numerical simulations of Grosenbaugh
& Yeung (1989) and Yeung & Ananthakrishnan (1997) that demonstrate some of the
complex dynamics that arise in ship flows once, for example, vorticity and viscosity
are included. In § 6 of this paper, we shall return to discuss the caveats of the low-
speed approximation.

Ultimately, we are interested in obtaining analytical intuition about the connection
between the ship’s hull and the waves produced. The more usual routes towards
analytical solutions assume an asymptotically small geometry, which leads to
the ‘thin-ship’, ‘flat-ship’ or ‘streamline-ship’ approximations; in such regimes, a
waveless ship is impossible (see for example, Kotik & Newman 1964 and Krein in
Kostyukov 1968), but these theories say very little about the case of non-thin ships.
Other examples of ship-wave models can be studied, including the Kelvin–Neumann
formulation in which the free-surface condition is linearized about a steady uniform
stream and the boundary condition on the ship’s hull is satisfied exactly, but generally
these problems do require a degree of numerical computation. A discussion of such
problems can be found in the book by Kuznetsov, Maz’ya & Vainberg (2002) and
the review and discussion by Newman et al. (1991) (see e.g. Pagani & Pierotti 2004
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FIGURE 2. Flow past a piecewise-linear N-hull. The N corners of exterior angles
πσ1, πσ2, . . . , πσN in the (x, y) plane (a) are mapped to w = −a1, −a2, . . . , −aN in
the complex potential plane (b). The stagnation point is w=−aN+1 = 0.

for more recent work on rigorous results applicable to non-slender geometries). We
finally refer readers to the reviews by Tuck (1991a) and Tulin (2005) for a summary
of the role played by low-Froude-number approximations, particularly in connection
with problems in which we require asymptotic solutions that preserve the nonlinearity
of the geometry.

The paper will proceed as follows. First, the mathematical formulation of the
ship-wave problem is briefly recapitulated in § 2. This is followed by the asymptotic
analysis of the low-Froude-number problem in § 3, which culminates in the derivation
of explicit expressions for the wake of an arbitrary multi-cornered ship. From these
analytical results, we explain why certain classes of multi-cornered ships can never
be made waveless in § 4, then in § 5, these theoretical results are vindicated by
comparisons with numerical computations.

2. Mathematical formulation
Consider steady, incompressible, irrotational, inviscid flow in the presence of gravity,

past the semi-infinite body shown in figure 2, which consists of a flat bottom and
a piecewise-linear front face. With tildes denoting dimensional quantities, we assume
that there is a uniform stream of speed U as x̃→−∞, and that the flow attaches to
the stern at a stagnation point, x̃=0 and ỹ=0. We note that in the context of potential
flow, any free-surface profile corresponding to stern flow, with U> 0, can be applied
to bow flow, with U < 0, as long as the radiation conditions are satisfied (cf. Stoker
1957, p. 174). In the context of gravity waves and for the situation shown in figure 2,
a solution for bow flow would require the free surface to be flat as x̃→∞.

We shall refer to a piecewise-linear hull with N corners as an ‘N-hull’. Introducing
the dimensional velocity potential by φ̃ = ∇ũ, we choose the zero level for the
potential such that φ̃ = 0 at the stagnation point. An N-hull will be specified by N
points along the negative real axis,

φ̃ =−ãk with − ã1 <−ã2 < . . . <−ãn, k= 1, 2, . . . ,N (2.1)

representing the corners in the potential plane, and with φ̃ > 0 corresponding to the
free surface. Along with the positions of the corners, the geometry of the hull can be
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described by specifying the angle, θ , of the hull with respect to the x̃-axis along each
of the k= 1, 2, . . . ,N linear segments of the solid boundary, φ < 0. We write

θ(φ̃)= θk =π

k∑
j=1

σj for φ̃ ∈ (−ãk,−ãk+1), (2.2)

where πσk is the exterior angle at the kth corner (see figure 2) and we set ãN+1 = 0
for the stagnation point. When N = 2, we will occasionally refer to the two-cornered
ship as a [σ1, σ2]-hull.

The dimensional problem can now be re-posed in terms of a non-dimensional
boundary-integral formulation. The derivation for one-cornered ships is found in
Trinh et al. (2011) and the one notable difference is that here we prefer to choose

L= K
U
, where K =

N∑
i=1

|φ̃(−ãi)|, (2.3)

as the characteristic length scale. In the one-cornered problem, −K is the value of the
potential at the single corner. To non-dimensionalize, we set

x̃= Lx, ỹ= Ly, u=Uũ, φ̃ =Kφ. (2.4)

We now seek the non-dimensional governing equations within the complex potential
(φ, ψ)-plane, where the streamfunction, ψ , is the harmonic conjugate of φ and ψ 6 0
within the fluid. The unknowns are the fluid speed q= q(φ,ψ), and streamline angles,
θ = θ(φ, ψ), measured from the positive x-axis, which satisfy the combination

q e−iθ = u− iv (2.5)

for horizontal and vertical velocities, u and v. The body and free surface are given
by the streamline ψ = 0, with φ < 0 for the body and φ > 0 for the free surface.

The free surface is then obtained by solving a boundary-integral equation, coupled
with Bernoulli’s condition:

log q= 1
π
−
∫ ∞
−∞

θ(ϕ)

ϕ − φ dϕ, (2.6a)

εq2 dq
dφ
=− sin θ, (2.6b)

on ψ = 0, and where we have introduced the non-dimensional parameter

ε = U3

gK
, (2.7)

which is related to the square of the Froude draft number. The N corners are specified
by points φ=−ak for k= 1, 2, . . . ,N and because of the choice of scaling (2.3), the
positions of the corners satisfy the normalization property

N+1∑
k=1

ak = 1 with aN+1 = 0. (2.8)
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2.1. Complexification of the free surface
Using the hull angles from (2.2) in (2.6a), we write the portion of the boundary
integral over the negative real axis as

1
π
−
∫ 0

−∞

θ(ϕ)

ϕ − φ dϕ = log

[
N+1∏
k=1

(φ + ak)
−σk

]
≡ log qs(φ), (2.9)

where the power, σN+1, in the product is defined according to the requirement that the
free surface approaches the uniform stream, with θ→ 0 and qs→ 1 as φ→∞. From
(2.9), this gives

σN+1 =−
N∑

j=1

σj. (2.10)

The function qs in (2.9) serves to distinguish the geometry of different piecewise-linear
ships. Note also that the product representation of the complex quantity qs can be
alternatively derived by using a Schwartz–Christoffel mapping applied to the polygonal
hull shape and a rigid, flat free surface (also known as the rigid-wall solution).

With particular choices for the corner positions, φ = −ak, and corner angles, σk,
the free-surface velocity qe−iθ can be numerically computed using (2.6) and (2.9).
However, as explained in Trinh et al. (2011, §3), the exponentially small free-surface
waves in the low-Froude-number limit, ε→ 0, arise due to the Stokes phenomenon.
To study this, we must analytically continue the free surface ψ = 0. Since the free
surface is parametrized by φ, this means that we allow φ to take on complex values.
Similarly, the velocity q(φ, 0), and streamline angle θ(φ, 0) are analytically continued,
so that these, too, will be complex-valued for complex φ.

There is a useful correspondence here between the complexified free surface and
the fluid region, which we now endeavour to explain. The complex velocity,

U(w)= qe−iθ , (2.11)

is an analytic function of the complex potential w = φ + iψ . On the free surface,
ψ = 0, the complex velocity is therefore equal to U(φ), which we will label Us(φ).
Now when we analytically continue the free surface by allowing φ to take on complex
values, the value of the analytically continued Us at the point φ=φr+ iφi (φr, φi ∈R)
is simply the value of U at the point w = φr + iφi, i.e. at φ = φr, ψ = φi. Thus
each point in the complexified free surface can be identified with a point in the real
physical fluid or possibly its continuation (since real fluid only exists for ψ < 0, but
the complexified free surface exists for all values of φi).

It is due to this correspondence between the complexified free surface and real
physical fluid that, within the context of low-Froude-number free-surface flows, we
often refer to a physical property (e.g. the corner of a ship) as generating a Stokes line.
Note also that this correspondence only holds for analytic functions of w. Although
the combination qe−iθ takes the same values at the point φ = φr + iφi, ψ = 0 (on the
complexified free surface), and the point φ=φr, ψ =φi (in the fluid), the same is not
true of the individual functions q and θ .

To emphasize this correspondence, and the fact that φ is complex, we relabel φ as w
in the analytically continued equations. Then analytically continuing (2.6a) and (2.6b)
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gives

log q± iθ = log qs(w)+H θ(w), (2.12a)

εq2 dq
dw
=− sin θ, (2.12b)

where the ± signs correspond to analytic continuation into the upper and lower half-φ-
planes, respectively, and H denotes the Hilbert transform operator on the free surface,

H θ(w)= 1
π

∫ ∞
0

θ(ϕ)

ϕ −w
dϕ. (2.13)

The remainder of this paper will be devoted to studying the two equations in (2.12).

3. Exponential asymptotics
A single-cornered ship will always produce exponentially small waves in the

low-Froude-number limit, ε → 0; these waves are explained by the presence of a
Stokes line which emerges from the singularity at the corner. For a multi-cornered
ship, the analysis proceeds almost identically to Trinh et al. (2011), except now each
corner of the hull has the potential to produce Stokes lines and its own separate
wave contribution. In this section, we shall briefly re-apply the methodology of the
previous work, and provide the corresponding formulae for the case of an N-hull.

3.1. Late-order terms
Here, we perform the asymptotic analysis which corresponds to analytically continuing
the free surface into the upper half-φ-plane; continuation into the lower half-plane
produces a complex-conjugate contribution, which we add to our results, later.

We begin by substituting the usual asymptotic expansions

θ =
∞∑

n=0

εnθn and q=
∞∑

n=0

εnqn, (3.1)

into (2.12a) and (2.12b) (with the + sign). In the limit ε → 0, the leading-order
solution is the rigid-wall flow of (2.9),

θ0 = 0, (3.2a)

q0 = qs =
N+1∏
j=1

(w+ aj)
−σj, (3.2b)

while the O(ε) terms are

θ1 =−q2
0
dq0

dw
, (3.3a)

q1 = iq3
0
dq0

dw
+ q0H θ1(w). (3.3b)

The key observation is that the leading-order solution, q0 in (3.2b), possesses a
singularity at each of the corners, w = −ak. Since the solution at each subsequent
order involves a derivative of the previous order, we would thus expect that as n→∞,
the power of the singularity grows. At the late orders, the asymptotic expansions (3.1)
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exhibit factorial-over-power divergence,

θn ∼
N+1∑
k=1

ΘkΓ (n+ γk)

χ
n+γk
k

and qn ∼
N+1∑
k=1

QkΓ (n+ γk)

χ
n+γk
k

, (3.4)

where γk is complex constant, Qk and χk are functions of the complex potential w.
There is a singulant χk (a term from Dingle 1973, p. 148), with χk(−ak) = 0, for
each singularity of the leading-order problem (3.2b). For much of the analysis, we
can simply choose one of the corners of interest and add the individual contributions
at the end.

The singularities, w = −ak, are located off the free surface, where the Hilbert
transform in (2.12a) is evaluated and so, as justified in Trinh et al. (2011), H θn(w)
is exponentially subdominant to the terms on the left-hand side for large n. At O(εn),
(2.12a) gives

θn ∼ i
qn

q0
− iq1qn−1

q2
0
+ · · · (3.5)

as n→∞, and substitution into (2.12b) gives the relevant terms at O(εn):

[q3
0q′n−1 + iqn] +

[
2q2

0q′0qn−1 + 2q2
0q1q′n−2 − i

qn−1q1

q0

]
+ · · · = 0. (3.6)

We substitute the ansatzes of (3.4) into (3.6), and this yields, at leading order as
n→∞,

dχk

dw
= i

q3
0
. (3.7)

Since χk is zero at each of the singularities, w=−ak, we integrate (3.7) to give

χk(w)=
∫ w

−ak

i
q3

0(ϕ)
dϕ. (3.8)

At the next order in (3.6) and using the substitution (3.5) as n→∞, we find that

Qk(w)= Λk

q2
0

exp
[

3i
∫ w

wF

q1(ϕ)

q4
0(ϕ)

dϕ
]
, (3.9)

where Λk is constant, and wF is any point for which the integral is defined. Finally,
(3.5) allows us to relate the two prefactors using Θk ∼ iQk/q0, so that

Θk(w)= Λki
q3

0
exp

[
3i
∫ w

wF

q1(ϕ)

q4
0(ϕ)

dϕ
]
. (3.10)

With χk, Qk, and Θk now determined, we have thus derived the late-orders behaviour
in (3.4), subject to the values of γk and Λk; these must be determined by applying
the method of matched asymptotics near the singularity w=−ak.

3.2. Stokes lines
From Trinh et al. (2011), we know that the components of the late-order terms (3.4)
play a crucial role in determining the free-surface waves. Using the expression of χk
in (3.8), Stokes lines can be traced from each of the ship’s corners, across which the
Stokes phenomenon necessitates the switching-on of waves. From Dingle (1973), these
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special lines are given by the points w ∈C where

Im[χk(w)] = 0 and Re[χk(w)]> 0. (3.11)

We now examine the direction in which the Stokes line first emerges from its
corresponding singularity. As w→−ak, we use (3.2b) to write

q0 ∼ ck(w+ ak)
−σk where ck =

N+1∏
j=1
j 6=k

(aj − ak)
−σj . (3.12)

Substituting this into (3.8) yields

χk ∼
[

i
c3

k(1+ 3σk)

]
(w+ ak)

1+3σk (3.13)

in the limit w→−ak. The condition that χk(−ak)= 0 requires that σk>−1/3. In other
words, for there to be a singularity, the local deviation of the corner must be greater
than −π/3. This is a necessary (but not sufficient) condition for there to be a free-
surface wave produced by the corner. In fact, a stronger condition for the existence of
a Stokes line emerging on the relevant Riemann sheet can be derived. We can write

arg(ck)=
N+1∑

j=k+1

arg(aj − ak)
−σj =−π

N+1∑
j=k+1

σj = θk, (3.14)

where the last equality follows from applying (2.2) and (2.10), and applies for analytic
continuation into the upper half-plane. Alternatively, (3.14) can be derived by noting
that the complex velocity q0e−iθ0 ∼ u − iv, and θ0 = 0, so the argument of ck must
correspond to the direction of the flow, θk, moving along the hull.

According to (3.11), we should search for directions in which arg(χk) = 2mπ for
m ∈ Z. If we write arg(w+ ak)= νk, then using (3.14) in (3.13), we see that Stokes
lines must leave at angles of

νk =
(

3θk + 2mπ−π/2
1+ 3σk

)
, (3.15)

where we need νk ∈ (0,π) in order for the line to emerge in the upper half-plane. The
general requirements for a Stokes line to intersect the free surface would depend on
the global properties of the leading-order flow, q0, but for most hulls, the requirement
that νk ∈ (0,π) with (3.15) is adequate. With this in mind, let

J ⊆ {1, 2, . . . ,N + 1} (3.16)

denote those corners, w=−ak, k∈J , that have a Stokes line crossing the free surface.
As an example, consider figure 3, which illustrates the Stokes lines for various N-

hulls, including a simple 2-hull, the 3-hull of Farrow & Tuck (1995), a bulbous 6-hull,
and a step-like 9-hull. With the exception of a single configuration, the condition that
a Stokes line emerges into the upper half-plane is enough to guarantee that it intersects
the free surface. The exception is with the 3-hull, for which the second singularity has
a Stokes line emerging at an angle of ν2 = 3π/5, but which does not later encounter
the free surface.
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FIGURE 3. Stokes lines for (a) the 2-hull, (b) Farrow & Tuck’s (1995)3-hull, (c) the 6-hull
shown before in figure 2, and (d) the 9-hull. For the 2-hull and 6-hull, the corner angles
diverge at ±π/4; for the remaining hulls, the corner angles are all rectangular.

3.3. Stokes phenomenon and wave expression
The derivation of the exponentials that appear whenever a Stokes line is crossed (the
Stokes phenomenon) follows the process outlined in Trinh et al. (2011) and Chapman
& Vanden-Broeck (2006): we optimally truncate the asymptotic expansions (3.1) at
n=N , and examine the remainders. We then set

q=
N−1∑
n=0

εnqn + SN , (3.17)
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with a similar expression for the series for θ . When N is chosen to be the optimal
truncation point, the remainder SN is found to be exponentially small. By re-scaling
near the Stokes line, it can be shown that a wave of the following form switches on:

∼ 2πi
εγk

Qk exp
[
−χk

ε

]
. (3.18)

To (3.18), we must also add the complex conjugate due to the contributions from
analytic continuation of the free surface into the lower half-φ-plane (see (2.12a)). The
sum of the two contributions is then

qexp,k ∼ 4π
εγk

Re
{

iQk exp
[
−χk

ε

]}
, (3.19)

with one such expression for every relevant Stokes line, k ∈J .
Thus, for any given arbitrary N-hull with a geometry such that J is non-empty, the

appearance of exponentially small waves is a necessary consequence of the divergent
low-Froude-number problem; in order to check that such a ship can never be waveless,
we need to verify that the sum of all the contributions incurred can never be zero, so
that there is a non-zero wave amplitude far downstream.

3.4. Wave formulae for N-hulls
The constants γk and Λk, which appear in the final form of the waves (3.19) (the latter
as a prefactor in Qk in (3.9)), can be determined by re-scaling w and q near each of
the singularities, and then matching the leading-order nonlinear (inner) solutions with
the late-order (outer) terms of (3.4). It can be shown (see (6.8) in Trinh et al. 2011)
that

γk = 6σk

1+ 3σk
(3.20)

and

Λk = c6−3γk
k eiπγk/2

2Ck (1+ 3σk)
γk

[
lim

n→∞
φn,k

Γ (n+ γk)

]
, (3.21)

where Ck is given by

Ck = q3
0(w

F) exp
(

3i
∫ −ak

wF

H θ1(ϕ)

q3
0(ϕ)

dϕ
)
. (3.22)

The terms φn,k are given by the recurrence relation,

φ0,k = 1, (3.23)

φn,k =
n−1∑
m=0

(
m+ 2σk

1+ 3σk

)
φmφn−m−1 for n > 1. (3.24)

We will often make reference to the limiting ratio in (3.21), so we define the function:

Ω(σk)≡ lim
n→∞

φn,k

Γ (n+ γk)
. (3.25)

The value of Ω(σk) only depends on the local divergence of the kth corner, and its
values are given in Trinh et al. (2011). Since Ω 6= 0 for all choices of the local
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angle σk, Λk is also non-zero and this verifies that each of the |J | corners of an
N-hull must necessarily generate a non-zero wave on the free surface.

With Qk given by (3.9), Λk given by (3.21) and (3.25), and arg(ck) from (3.14), we
have from (3.19) the result that

qexp,k ∼ 4π

εγk

|ck|6−3γk

2(1+ 3σk)γk

Ω(σk)

q5
0

exp
[
−Im

(
3
∫ w

−ak

H θ1

q3
0

dφ
)]

exp
[
−Re(χk)

ε

]
× cos

[
− Im(χk)

ε
+ π

2
+ πγk

2
+ (6− 3γk)θk +Re

(
3
∫ w

−ak

H θ1

q3
0

dφ
)]

. (3.26)

Then, for each k ∈J , we add the waves together, so that the total wave contribution
after all the Stokes lines have been crossed is

qexp ∼
∑
k∈J

qexp,k. (3.27)

In summary, the procedure to derive the exponentially small waves for an
N-cornered ship is as follows: (i) compute the first two terms of an asymptotic
approximation for q and θ in (3.2) and (3.3); (ii) for each singularity of q0, compute
χk in (3.8) and apply conditions (3.11) to determine whether the Stokes line intersects
the free surface, i.e. determine the set J in (3.16); (iii) for each k ∈ J , compute
the constants, ck, γk, Ω(σk) from (3.12), (3.20), and (3.25); finally (iv) determine the
individual waves (3.26) and sum all the contributions according to (3.27).

4. The non-existence of waveless ships

Let us see what would be needed to produce a waveless ship.
The wave contributions (3.26) are written in terms of different singulants, χk. To

make it easier to sum them we rewrite them in terms of the single singulant, χ1. From
(3.8), note that

χ1(w)= i
∫ −ak

−a1

dφ
q3

0
+ χk(w), (4.1)

where in order for the integral to exist, we may have to avoid the intermediate corners
by deforming the contour into the upper half-plane. Consider now qexp,k in (3.26) when
w is evaluated on the free surface, that is, for w∈R+. In the appendix of Trinh et al.
(2011), it was shown that

exp
[
−Im

(
3
∫ w

−a1

H θ1

q3
0

dφ
)]
= q3

0(w) e. (4.2)

Moreover, the real part of χ1(w) comes from the residue of the integrand at w=∞.
We can verify that corresponding to analytic continuation into the upper half-w-plane,

Re(χ1)= 3π

N∑
i=1

aiσi. (4.3)

This result is derived by expanding (3.2b) as w→∞, substituting into (3.8), and
integrating along a semi-circular contour.
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Putting the above results together with (3.26) we find, for w ∈R+,

qexp,k ∼ Ak

q2
0(w)

exp
[
−3π

ε

N∑
i=1

aiσi

]
cos
[
− Im(χ1(w))

ε
+Re

(
3
∫ w

−a1

H θ1

q3
0

dφ
)
+Ψk

]
(4.4a)

where the dependence on k arises only through the constants

Ak = 4πe
εγk

|ck|6−3γkΩ(σk)

2(1+ 3σk)γk
exp

[
Im
(

3
∫ −ak

−a1

H θ1

q3
0

dφ
)]

exp
[
−1
ε

Im
(∫ −ak

−a1

dφ
q3

0

)]
,

(4.4b)

Ψk = 1
ε

Re
(∫ −ak

−a1

dφ
q3

0

)
−Re

(
3
∫ −ak

−a1

H θ1

q3
0

dφ
)
+ π

2
+ πγk

2
+ (6− 3γk)θk. (4.4c)

4.1. On the two-cornered ship (2-hull)
We have already shown in Trinh et al. (2011) that a single-cornered hull must produce
waves. Therefore let us consider first the next simplest case of a 2-hull. For such a
ship to be waveless, both corners must generate Stokes lines that intersect the free
surface, and the waves generated by each must exactly cancel; then, there will be a
finite section of free surface containing waves, but no wavetrain at infinity (as happens
in the case of capillary waves in Chapman & Vanden-Broeck 2002).

In order for the waves from the two corners to cancel, we need A1=A2 from (4.4b).
Now for a fixed value of ε this may be possible (and we give such an example in
§ 5), but what if we want the waves to vanish for all (small) values of ε? Then, since
each Ak is of the form

λ1 ε
λ2 e−λ3/ε, (4.5)

as ε→ 0 and for real constants λ1, λ2, λ3, we need the exponentials to be equal, the
powers of ε to be equal, and the prefactors to be equal. In order for the exponentials
to be equal, we see from (4.4b) that

Im
(∫ −a2

−a1

dφ
q3

0

)
= 0. (4.6)

From (3.12) and (3.14), we have

arg
(
1/q3

0

)=−3θk for w ∈ (−ak,−ak+1) (4.7)

and the only way (4.6) can hold is if θ1 =π/3, so that q3
0 is real for w∈ (−a1,−a2).

Now, for the algebraic factors of ε to be equal, we require γ1 = γ2, which implies
σ1=σ2. Thus the only possibility for a waveless 2-hull is for a ship with σ1=σ2=1/3.
To eliminate this final possibility we need to consider the prefactors of (4.4b). Since
along the real w-axis, it follows by definition of (2.13) that

Im (H θ1)=
{

0, w< 0,
θ1(w), w> 0, (4.8)

and q3
0 is real for −a1 <w<−a2, then

Im
(

3
∫ −a2

−a1

H θ1

q3
0

dφ
)
= 0. (4.9)
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The only remaining difference between the two prefactors is in ck (3.12). However,
since

c3
1 =

a2
1

(a1 − a2)
and c3

2 =
a2

2

(a1 − a2)
, (4.10)

the only way that we can have |c1| = |c2| is if a1= a2. Thus the two prefactors (4.4b)
must be different, one corner always dominates the other one, and the waves can never
cancel. Waveless ships with two corners are not possible.

4.2. On general N-cornered ships (N-hulls)
What can we say about more general ships? Let us take a general N-hull with the
following assumptions: suppose that all the Stokes lines intersect the free surface, that
σk > 0 for each k, and that θN 6 2π/3. In figure 1, hulls (a–e) satisfy this requirement,
whereas hulls (f–h) do not. Under these assumptions, θk is monotonically increasing
with k, so that arg(1/q3

0) is monotonically decreasing. Thus the argument of the
exponential

− 1
ε

Im
(∫ −ak

−a1

dφ
q3

0

)
(4.11)

is convex in k, increasing while 0< θk < π/3 and then decreasing while π/3< θk <

2π/3. Thus if θj 6=π/3 for all j then we can see immediately that the waves generated
at the corner k such that θk−1 < π/3 < θk exponentially dominate all the others. On
the other hand, if θk = π/3 then the waves from corners k and k+ 1 have the same
exponential factor (as in the 2-hull case). If we further impose σk = σk+1 then they
have the same algebraic factor, and there is possibility of wave cancellation if the
prefactors are equal.

Of course, even if we could get the prefactors to be equal, we still have to worry
about the waves generated by all the other corners. In fact, even from these two
corners there would be higher-order correction terms (both in the form εe−c/ε , ε2e−c/ε ,
etc. and also in the form of a trans-series e−c/ε , e−2c/ε etc.). Thus it does not seem to
be worth pursuing the analysis further. However, even if we cannot get the waves to
cancel exactly, we might expect a significant reduction in the amplitude of the waves
in the case when leading-order cancellation occurs.

4.3. On particular N-cornered ships
This brings us to the natural question of whether the analysis we have presented may
be used to design a hull to minimize the wave drag. Before we address this question,
let us first demonstrate that the hulls shown in figure 1(f–h) must generate waves on
the free surface.

We consider them in reverse order. The 9-hull shown in figure 1(h) has |J | = 5
(as shown in figure 3), with arg(1/q3

0) alternating between zero and −3π/2; thus the
argument above can be used to show that the contribution from w=−a1 exponentially
dominates all the others. The 6-hull shown in figure 1(g) has |J | = 4, with three
positive angles σ and one negative angle. Thus the algebraic factor in the contribution
from w=−a5 is different to the others, and those waves must always exist on the free
surface.

Finally let us consider the 3-hull shown in figure 1(f ), which is found in the work of
Farrow & Tuck (1995), and for which the addition of a downward-pointing bulb was
shown to dramatically reduce the wave resistance compared to a rectangular ship. In
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this case, |J | = 1, and w=−a3 is the only relevant corner, so there are always waves
on the free surface. The principal effect of the bulb is to lower the usual singularity
farther away from the free surface, thereby decreasing the amplitude of the waves.

This last example not only highlights the difficulty in trying to minimize the
wave drag, but also the advantage of our semi-analytic approach: we have gained
considerable insight into the mechanism of wave production; from this, we can
immediately see why Farrow & Tuck obtained the results that they did.

In trying to design reduced-wave hulls, it is crucial to specify what exactly is the
optimization process. For example, if we simplify the hull of Farrow & Tuck to a
2-hull by reducing the width of the downward-pointing bulb to zero, then we have one
parameter, a1, over which we can optimize (since a1 + a2 = 1). We find the smallest
waves occur for a1 = 0.5, i.e. when there is no bulb. However, in our current non-
dimensionalization, as we vary a1, both the depth of the hull and that of the bulb
vary. If instead we fix the depth of the hull, and allow the depth of the bulb to vary,
we find that the waves get smaller as the bulb gets deeper. On the other hand, if we
fix the depth of the bulb, and allow the depth of the hull to vary, we again find that
the smallest waves correspond to the hull depth being equal to the bulb depth, i.e. to
there being no bulb.

5. Numerical and asymptotic results for two-cornered hulls

The numerical algorithms developed in Trinh et al. (2011) can be used to verify the
asymptotic predictions. Here, we focus on the particular case of a 2-hull, which we
refer to as a [σ1, σ2]-hull; this is a ship with divergent corner angles σ1 and σ2, and
with leading-order flow given by (2.9), or

qs = wσ1+σ2

(w+ a1)σ1(w+ a2)σ2
, (5.1)

with a1 + a2 = 1.
As we discussed in Trinh et al. (2011), the numerical computation of the stern

problem at small values of ε can be particularly difficult, and the culprit is the
presence of the attachment singularity at w = 0 associated with a small boundary
layer; this singularity is responsible for most of the numerical error. For hulls where
the in-fluid attachment angle between the free surface and body is less than π/3, a
simple finite-difference scheme based on the methods outlined in Vanden-Broeck &
Tuck (1977) can be used, provided that we limit our search to waves larger than
≈ 10−4. Figure 4 provides an example of solutions found using this method.

The theory of §§ 3 and 4 can be verified by comparing the analytical predictions
with numerically computed wave amplitudes far from the ship. First, consider the
effect of varying the Froude number on ships of a fixed geometry. This is shown in
figure 5 for three 2-hulls with their corners fixed with a1 = 0.8 and a2 = 0.2. The
individual cosine waves are calculated from (3.26) with q0→ 1 downstream, and then
the final amplitude computed using the sum (3.27) (see § 4.5 in Trinh 2010b for
additional details). The match between numerical and asymptotic solutions is quite
good, and like the previous work, we remark that the results are applicable over a
wide range of Froude numbers.

Next, we would like to consider the effect of fixing the Froude number, but varying
the positions of the corners. The problem, however, is that the interesting effects of
this procedure are only seen at values of ε much smaller than those we can achieve
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FIGURE 4. Solutions for the [0.5, 0.125]-hull (dashed line) and [0.25, 0.25]-hull (solid
line) at ε = 2/3 and ε = 1/3, respectively. Both ships have corners set at a1 = 0.8 and
a2 = 0.2. The solutions were computed using ALGORITHM A of Trinh et al. (2011) with
the number of mesh points, n= 1000 and grid spacing, 1φ = 0.015 for the former ship
and n= 2000 and 1φ = 0.015 for the latter.
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FIGURE 5. Numerical (circles) and asymptotic (solid) amplitudes of the downstream
waves for a range of hull inclinations. In all cases, the corner points are fixed with
a1 = 0.8 and a2 = 0.2. The solutions were computed using ALGORITHM A of Trinh et al.
(2011). The parameters used were the following: n= 1000, 1φ= 0.04 (bottom); n= 1500,
1φ = 0.03 (middle); and n= 2000, 1φ = 0.025 (top).

using the above numerical methods. In the Appendix, we present a slightly simplified
version of the ship-wave problem (2.12a)–(2.12b) that preserves the asymptotic
structure of the waves, but also enables us to compute numerical solutions to much
higher accuracy.

This simplified problem was used to create figure 6, which shows the effect of
varying the positions of the corners on the wave amplitude for a [1/4, 1/4]-hull



508 P. H. Trinh and S. J. Chapman

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

10–7

10–6

a1

10–8

10–5

W
av

e 
am

pl
itu

de
, R

e(
q)

FIGURE 6. The numerical solution (solid) is plotted against the asymptotic approximation
(dashed) for the simplified nonlinear problem of the Appendix. The ship is a
[1/4, 1/4]-hull with a1 + a2 = 1 and ε = 0.15. The dotted line indicates the one-cornered
approximation for a rectangular hull.

with ε = 0.15, a1 + a2 = 1, and values of 0.5 6 a1 6 1. The figure contains a number
of interesting effects: the first is that the numerically computed wave amplitude shows
a significant dip (an order of magnitude) near a1 ≈ 0.96, and that this effect is also
captured fairly accurately in the asymptotic solution.

The reason for the dip is that, near a1 ≈ 0.96, the waves from the two corners
exhibit partial destructive interference. However, from the previous section, we know
that the waves generated by the corner at −a2 should exponentially dominate those
from −a1. How then are they cancelling each other? The answer is that the prefactor
|c1|6−3γ1 is over ten times larger than |c2|6−3γ1 ; at this particular value of ε, the
difference in prefactors is enough to compensate for the difference in exponentials,
since

Im
(∫ −a2

−a1

dφ
q3

0

)
(5.2)

is not particularly large. Thus, the value of a1 at which cancellation occurs depends
on ε; for somewhat smaller values of ε the Stokes line from w = −a2 does indeed
dominate and no cancellation is possible. This indicates that it should be possible to
design hulls with reduced wave drag at a particular speed (Froude number). It is also
reassuring to note that including the leading-order term from each of our exponentially
small waves captures the behaviour of the solution very well, even though, formally,
one of the terms is exponentially subdominant.

The second effect illustrated by figure 6 is the divergence between our asymptotic
expansion and the numerical solution for values of a1 close to 0.5. The reason for the
divergence is that the prefactors c1 and c2 are singular as the corners approach each
other; our analysis in § 3, in fact, implicitly assumes that the corners of the ship are
spaced sufficiently far from one another.

To be more specific, in order to determine the constants γk and Λk in (3.20)
and (3.21) in the previous analysis, the outer solution was required to match a
nonlinear inner solution. The size of this inner region can be derived by observing
where the breakdown in the outer expansion (3.1) first occurs, i.e. where εq1 ∼ q0.
From (3.2b) and (3.3b), the required re-scaling of w near a singularity at −ak can be
seen to be

w+ ak =O
(
ε1/(1+3σ)

)
. (5.3)
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Thus, if two (or more) singularities are spaced within a distance of (5.3) apart, then
the previous asymptotic methodology breaks down as ε→ 0. If we combine the two
corners into a single corner of angle π/2, we find the wave amplitude given by the
dotted line in figure 6. This approximation clearly works well for a1 close to 0.5.

A uniform approximation would need to smoothly match with the one-cornered
approximation at one end, and the (separated) two-cornered analysis at the other, and
thus bridges the dashed and dotted lines in figure 6. Such an approximation requires
us to consider the distinguished limit in which the corners of the ship are allowed
to approach one another as ε → 0. This is similar to the situation in Chapman &
Vanden-Broeck (2006, Appendix B) where the asymptotic solutions for flow over a
rectangular step in a channel were analysed in the case where both corners of the step
lie in the same ‘inner region’. For the case of the multi-cornered ship, the details of
this analysis are very technical, and will be published in a future paper.

6. Discussion

In the end, what is the definitive answer to the conundrum of existence and
non-existence of waveless ships? Unlike our results for the single-cornered ships of
Trinh et al. (2011), there does not seem to be a simple answer to this question,
applicable to the most general piecewise-linear hulls. Despite this, however, we have
offered several new insights into the study of ship-wave resistance: we have offered
explicit formulae for the computation of waves given the shape of the ship’s hull;
we have offered simple interpretations of the production of such waves in terms
of Stokes-line crossings and the Stokes phenomenon; and perhaps most importantly,
we offered a methodology which, given specific ships, provides an immediate and
intuitive understanding of the effect of the body on the free surface.

In the previous work, we highlighted the importance of distinguishing between local
and global properties of the analysis. Consider the factorial-over-power divergence of
the asymptotic series in (3.4), or the emergence conditions of Stokes lines in (3.15), or
the numerically determined prefactor, Ωk, in (3.25) – these are all local properties of
the problem; indeed their derivation only depends on the behaviour of the asymptotic
solution near the relevant singularities. These local properties, we understand well.

In contrast, many global questions remain unanswered. For example, given a ship,
represented by q0, what are the necessary and sufficient conditions for Stokes lines
to intersect the free surface? In § 3.2, we assumed that only Stokes lines that emerge
on the same Riemann sheet are relevant. Is this always the case? (See, e.g. Chapman
& Mortimer (2005), Chapman, Trinh & Witelski (2013), Trinh & Chapman (2013b)
for scenarios where this may not be true.) Or perhaps more difficult: what are the
necessary restrictions on q0 so that total phase cancellation occurs? We have provided
a few preliminary results on this global problem, but a more exhaustive analysis of
these issues remains an open problem.

Naturally, our study of ship waves would be incomplete without a theory applicable
for smooth hulls, with the eventual goal of addressing the well-known technique
of using a bulb to reduce the wave resistance of a ship (Baba 1976). However,
the difficulty here is that analytic continuation is an ill-posed process and small
perturbations in the shape of a hull can have large effects on the associated
singularities – a unified theory for arbitrary ship geometries is likely to prove
difficult, if not downright impossible.

Perhaps, then, we should only consider specific classes of smooth ships. Ship waves
associated with continuous geometries have been considered in the numerical work
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FIGURE 7. Stokes lines for the smoothed hull in (6.2) with a1 = 0.8 and a2 = 0.5. The
Stokes line leaves tangentially along the boundary, but later intersects the free surface.

of Tuck & Vanden-Broeck (1984), Madurasinghe (1988), and Farrow & Tuck (1995),
where there, the hulls are specified by piecewise-entire functions. For example, Farrow
& Tuck (1995) consider the family of hulls given by

θ =


0 for w ∈ (−∞,−1)

A(w+ 1)(w+ b)+ π

2
(w+ 1)
(1− b)

for w ∈ (−1,−b)
π

2
for w ∈ (−b, 0),

(6.1)

which, given parameters A and b, provides a ship consisting of a horizontal bottom
and a vertical line, joined by a rounded section; A > 0 yields rounded corners and
A< 0 yields bulbous sterns. The key is that if we restrict ourselves to classes of ships
given by piecewise-entire functions, then the complex singularities must be located at
the points joining each piece. As a simpler example, we may consider the ship with

θ =


0 for w ∈ (−∞,−a1)

π

2

[
1+ (w+ a2)

(a1 − a2)

]
for w ∈ (−a1,−a2)

π

2
for w ∈ (−a2, 0),

(6.2)

which is similar to the vertically faced one-cornered ships studied previously, but with
a rounded edge. Analysis of the Stokes lines shows that the relevant line emerges from
w=−a2; this is shown in figure 7. The study of these piecewise-entire ships is the
subject of ongoing investigation.

A similar direction for research is towards the development of a low-Froude-number
asymptotic theory for flows past three-dimensional, full-bodied ships. This builds
upon the works of, for example, Keller (1979) and Brandsma & Hermans (1985),
who apply geometrical ray theory to the case of streamline (thin) ships. In theory,
the interpretation we have presented in this paper of free-surface waves arising from
Stokes-line crossings is still valid in three dimensions, except now singularities are
associated with Stokes surfaces rather than lines. In practice, however, the analysis
is complicated due to the loss of complex-variable techniques. We refer the reader
to the work of Chapman & Mortimer (2005), which provides a first step towards
extensions of exponential asymptotics to partial differential equations.

In addition to our study, which solely focuses on the low-Froude-number model of
Dagan & Tulin (1972), it is important for us to question the place of these simplified



Wake of a two-dimensional ship in the low-speed limit 511

mathematical models in terms of the bigger picture: that which includes the effects of
vorticity, viscosity, and time-dependence in ship-wave interactions. As we elucidated in
the introduction, numerical work (as particular examples, see Grosenbaugh & Yeung
1989 and Yeung & Ananthakrishnan 1997) show that in practice, these neglected
effects can have significant roles in the production of waves. Extended discussions of
the role of low-Froude-number theories appear in Tuck & Vanden-Broeck (1984, p.
301), Tuck (1991a), and Tulin (2005). Thus, while it is certainly true that in order
to obtain analytical approximations directly relating ship geometries to free-surface
waves, the low-Froude-number approximation provides enormous simplification, we
hope that similar analytical theories can be developed which include a more complete
host of effects.

Appendix. The simplified nonlinear problem
The full problem in (2.12a)–(2.12b) can be studied using the methods we develop

here, but can also work with a simpler problem that nevertheless contains all of the
the key components. The reason for this simplification is that, in order to verify the
asymptotic analysis in the regime where the ship’s corners are closely spaced, wave
amplitudes must be computed to five or six digits of precision – otherwise, the fine
effects of adjusting the ship’s geometry are easily missed; this precision can only be
easily achieved for the simpler problem, which we now derive.

As we know, when exponentially small terms are sought from (2.12a), the integral
term, H θ , only plays a minor role throughout the analysis. If we return to the
derivation of the late-orders ansatz (3.4), we recall that the subdominance of H θ as
n→∞ ensures that it plays no part in the derivation of χk. In fact, the only role
of the Hilbert transform is to change the expression for q1 in (3.3b). Consequently,
in the final form of the waves qexp,k in (3.26), the presence of H θ1 only serves to
change the amplitude coefficient and the phase shift by an O(1) amount.

Therefore, the salient features of the problem can still be retained if we use log q±
iθ = log qs instead of (2.12a); this way, we simplify the full problem in (2.12a)–(2.12b)
to a single nonlinear differential equation in q. Analytic continuation into the upper
half-plane, and substituting iθ = log(qs/q) into (2.12b) gives

εqsq3 dq
dw
+ i

2

[
q2 − q2

s

]
= 0, (A 1)

which can be solved subject to the single boundary condition q(0) = 0. It is more
convenient to work under the substitution u(w)= q2(w), where we have

εqsu
du
dw
+ i[u− q2

s ] = 0, (A 2)

as a simplified nonlinear model of ship waves. Simplifications of the boundary-integral
problem (2.12a) and (2.12b) were also proposed in Tuck (1991a,b), but there, the
simplifications were argued based on behavioural requirements. Here, (A 1) is a
justified reduction based on the ε→ 0 limit.

Notice that in this new problem, we chose to analytically continue into the upper
half-w-plane, and thus the exponentially small waves of (A 1) will possess both a real
and imaginary part. If we wish, we can mirror the analysis for the lower half-w-plane
and add the complex conjugate as we did before for (3.19).

However, it is somewhat simpler to examine (A 1) as a problem on its own; thus we
shall only concern ourselves with studying the real component of the solution to (A 1),
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which we write qexp=Re(qexp). Now instead of (3.26), the form of the waves for the
simplified problem (with well-separated corners) is given by

qexp,k ∼
2π

εγk

|ck|6−3γk

2(1+ 3σk)γk

Ω(σk)

q5
0

exp
[
−Re(χk)

ε

]
× cos

[
− Im(χk)

ε
+ πγk

2
+ (6− 3γk)θk

]
, (A 3)

which is effectively (3.26) with H ≡ 0 and without a phase shift of π/2. The
reduction by a factor of 2 in (A 3) compared to (3.26) occurs because there is no
need to add the complex-conjugate wave contribution. Analytical and numerical results
for the simplified nonlinear problem of (A 1) in the context of a one-cornered ship
can be found in Trinh et al. (2011), whereas we have already discussed the numerical
solution of the [1/4, 1/4]-hull for the simplified problem in § 5 and figure 6.
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